# Effects of mathematical skills on labour market outcomes and life conditions 

Helena Skyt Nielsen
Department of Economics and Business Economics
Aarhus University
NORSMA
November 23-24, 2023


## Annual earnings (incl. pension) for college graduates 2012-2016, 5 years after college <br> Source: cepos, Statistics Denmark.

| Rank | Formal label | Education | Income (kr) |
| :---: | :---: | :---: | :---: |
|  | 1 cand.act. | Insurance mathematics | 916.000 |
|  | 2 cand.polyt. | Engineering (wireless comm) | 795.000 |
|  | 3 cand.merc.(mat.) | Business economics and mathematics | 768.200 |
|  | 4 cand.oecon. | Economics | 756.600 |
|  | 5 cand.polyt. | Engineering (business systems) | 756.300 |
|  | 6 cand.polit. | Economics | 755.200 |
|  | 7 cand.odont. | Dentistry | 754.300 |
|  | 8 cand.polyt. | Engineering (supply chain and innovation mgmt) | 753.000 |
|  | 9 cand.polyt. | Engineering (pharma-technolgy) | 746.300 |
|  | 10 civilingeniør | Information technology | 735.400 |
|  | 11 cand.merc.aud. | Auditing | 725.600 |
|  | 12 cand.med. | Medicine | 718.200 |
|  | 13 cand.polyt. | Engineering (chemistry) | 716.100 |
|  | 14 cand.polyt. | Engineering (industrial economics and tech) | 715.600 |
|  | 15 cand.polyt. | Engineering (software development) | 708.000 |
|  | 16 cand.polyt. | Engineering (robot tech) | 703.000 |
|  | 17 cand.scient. | Computer science | 701.900 |
|  | 18 cand.polyt. | Engineering (computer tech) | 698.500 |
|  | 19 cand.scient.oecon. | Mathematics-economics | 695.500 |
|  | 20 cand.merc.(bio) | Business economics and bio entrepreneurship | 693.700 |
|  | 21 cand.oecon.agro. | Agricultural economics | 691.800 |
|  | 22 cand.polyt. | Engineering (comm tech) | 689.600 |
|  | 23 cand.merc.(it) | Business economics and IT | 686.700 |
|  | 24 cand.polyt. | Engineering (systems design) | 686.400 |
|  | 25 cand.polyt. | Engineering (tech-based business dev) | 680.700 |
|  | 26 cand.polyt. | Engineering (maths and computing) | 675.100 |
|  | 27 cand.jur. | Law | 671.600 |
|  | 28 cand.soc. | Business economics | 670.100 |
|  | 29 cand.it. | Software design | 667.400 |
|  | 30 cand.merc. | Business economics | 666.600 |


| Rank | Formal label | Education | Income (kr) |
| :---: | :---: | :---: | :---: |
|  | 31 cand.san. | Health and information | 666.000 |
|  | 32 cand.scient.tech. | Construction management | 664.700 |
|  | 33 cand.polyt. | Engineering (AI) | 662.700 |
|  | 34 cand.polyt. | Engineering (construction) | 662.100 |
|  | 35 cand.polyt. | Engineering (Electro tech) | 660.100 |
|  | 36 cand.polyt. | Engineering (mechanics) | 658.700 |
|  | 37 cand.it. | Communication and IT | 650.600 |
|  | 38 cand.merc.(jur.) | Business economics and law | 649.200 |
|  | 39 cand.polyt. | Engineering (physics) | 648.600 |
|  | 40 cand.scient. | Statistics | 647.900 |
|  | 41 cand.geom. | Land surveyor | 642.800 |
|  | 42 cand.polyt. | Engineering (medicine and tech) | 641.800 |
|  | 43 cand.pharm. | Pharmacology | 641.400 |
|  | 44 cand.lact. | Dairy science | 641.000 |
|  | 45 cand.polyt. | Engineering (product development) | 640.400 |
|  | 46 cand.scient.tech. | Management and information in construction | 637.700 |
|  | 47 cand.polyt. | Engineering (autonomous systems) | 637.500 |
|  | 48 cand.polyt. | Engineering (material and process tech) | 636.100 |
|  | 49 cand.scient. | Information technology | 633.900 |
|  | 50 cand.merc.(pol.) | Business economics and politics | 632.600 |
|  | 51 cand.polyt. | Engineering (vision, graphics etc) | 631.300 |
|  | 52 cand.polyt. | Engineering (regulation and automation) | 631.000 |
|  | 53 cand.scient. | Interdisciplinary science education | 630.200 |
|  | 54 cand.polyt. | Engineering (chemistry and bio-chem tech) | 628.500 |
|  | 55 cand.it. | Digital innovation and management | 628.000 |
|  | 56 cand.polyt. | Engineering (construction tech) | 626.700 |
|  | 57 cand.scient.pol. | Political science | 625.800 |
|  | 58 cand.it. | IT, communication and organisation | 624.500 |
|  | 59 cand.polyt. | Construction management | 624.200 |
|  | 60 cand.polyt. | Engineering (transportation and logistics) | 622.900 |

## Math skills are scarce skills

- In the production process, input factors in short supply receive a "rent"
- Standard examples
- access to natural resources
- location close to a river
- patent
- etc.
- Other examples
- workers with an extraordinary talent or authorization
- e.g. athletes, artists, surgeons, musicians
- workers with scarce skills
- e.g. quantitative or mathematical skills
- Careers requiring math skills pay more due to scarcity of those skills


## Math skills are scarce skills

- Paglin \& Rufolo (1990) used this to explain the gender wage gap $:$
- Males and females receive the exact same return to quantitative skills
- Males more often possess high-level quant skills than females (due to curriculum choice)


FIG. 2.-Probability of major by GRE-Q. Probabilities in each GRE-Q interval would total $100 \%$ if all subject majors were shown. Source.-Derived from Educational Testing Service data, tape of all test takers in academic year 1981-82 (see Goodison 1983). ■ Education and social science (excludes economics); $\mathbf{\Delta}$ biological and health sciences; engineering, math, and physical sciences.

## Math skills are scarce skills

- Math and quant skills are no longer enough
- Higher-order skills needed
- evaluation, problem-solving, critical thinking, make connections to new ideas, etc. etc.
- Social skills are needed
- teamwork, interpersonal skills
- Such skills allow us to trade tasks with each other in a team and exploit our comparative advantages


## Math skills are scarce skills

- Deming (2017) studies the combination of math and social tasks
- High employment and wage growth in math-intensive occupations if combined with social tasks



Cumulative Changes in Real Hourly Wages by Occupation Task Intensity, 1980-2012

## Math skills are scarce skills

- ... across the entire distribution

FIGURE A. 4
FIGURE A. 3
Smoothed Changes in Employment by Occupational Task Intensity 1980-2012


[^0]Sources: 1980 Census, 2011-2013 ACS

Smoothed Changes in Median Wages by Occupational Task Intensity 1980-2012


Occupational Task Intensity based on 1998 O*NET
Sources: 1980 Census, 2011-2013 ACS

# Do high school students acquire advanced math skills? 



## Only few Danish high school students do:

|  |  |
| :--- | ---: |
| Ordinary academic track, STX $(\mathbf{N}=\mathbf{2 7 8 6 5 )}$ |  |
| English A, Social science A | $30 \%$ |
| Biology A, Chemistry B | $15 \%$ |
| Math A, Social science A | $14 \%$ |
| Math A, Physics B, Chemistry B | $9 \%$ |
| Bio-tech A, Math A, Physics B | $8 \%$ |
| Any course package w/Math A | $\mathbf{3 6 \%}$ |


| Business tracks, HHX (N=9615) |  | Technical tracks, HTX (N=5008) |  |
| :--- | ---: | :--- | :--- |
| Marketing A, Bus. economics A | $42 \%$ | Physics A, Math A | $19 \%$ |
| Marketing A, Int. economics A | $29 \%$ | Bio-tech A, Math A | $19 \%$ |
| Marketing A, Innovation B | $11 \%$ | Tech A, Design B | $14 \%$ |
| Int. econ. A, Bus. econ. A | $8 \%$ | Math A, Programming B | $10 \%$ |
| Math A, Bus. economics A | $\mathbf{7 \%}$ | Comm./IT A, Programming B | $8 \%$ |
| Any course package w/Math A | $\mathbf{8 \%}$ | Any course package w/Math A | $\mathbf{6 1 \%}$ |

- $32 \%$ of the high school cohort 2019/20 chose a course package with Math A
- Policy option: introduce a new (attractive) course package with Math A?


# How to improve math skills in high school? 



## Causal inference from policy variation

- Random experiments
- Large-scale policy experiments are rare
- Quasi-experiments
- Plausibly exogenous policy variation affecting a fraction of the population
- Four examples

1. New course package (Joensen \& Nielsen, 2016)

- unanticipated introduction after school start (instrumental variables strategy)

2. Semi-external assessment of math (Burgess et al. 2021)

- random draw of exam course in high school (random assignment)

3. Double-dose algebra (Nomi et al. 2021, Cortes et al. 2015)

- students below a test score cutoff assigned to support course (regression discontinuity design)

4. Growth mindset intervention (Bettinger et al. 2018, Rege et al. 2021)

- randomized controlled trial


## Causal inference from policy variation

- June is treated
- Julie is control
- Exposed to as-good-asrandom policy variation

High school:


Year 1
Year 2
Year 3
... Year 13

## New course package



Course package STX w/o pilot, 1987-1990


ㅇ 11\% $\rightarrow$ 20\%
§39\% $\rightarrow$ 50\%

## Who changed their course package?

- Counterfactual course packages
- Math A + Physics A (+ Chemistry B) -> Math A + Chemistry A (+ Physics B)
- Math B + Social science A/Natural science A -> Math A + Chemistry A
- Females
- Chemistry less male-stereotypical
- Gender composition more equal
- Class environment less competitive
- Females less willing to enter mixed-sex competition
- Females often perform worse in mixed-sex competition


## Effect of

 Advanced Math on earnings across the ability distribution

Fig. 3. Marginal Treatment Effects (MTEs) of Mathematics on Earnings, Marginal Students

Source: Joensen \& Nielsen (2016), Mathematics and Gender: Heterogeneity in Causes and Consequences. Economic Journal 126: 1129-63.

# Semi-external assessment in math 



## Semi-external assessment in math (SEAM)

- Not surprising that
- coursework and instruction time affect skills
- More surprising that
- assessment, test-taking and exams affect skills
- However, it may affect human capital and belief formation
- Burgess et al. (2022) exploit policy variation
- Students are randomly assigned to have an oral exam with an external examiner present in a subset of courses
- June and Julie both attended Math A and Danish classes
- June is randomly allocated to an oral exam in Math A, but not Danish
- Julie is randomly allocated to an oral exam in Danish, but not Math A
- Mechanisms:
- If SEAM affects GPA => access to more college programs
- If SEAM affects beliefs about math skills $=>$ choice of college degrees requiring or demanding math skills


## Effect of semi-external assessment in math (SEAM) on short- and long-term outcomes

Table 3
Regression results: the effect of SEAM on subsequent education.

|  | Overall <br> GPA <br> (1) | Enroll (2) | Graduate(3) | Math degrees |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Req. <br> (4) | Dem. (5) |
| Female | $\begin{aligned} & 0.204^{* * *} \\ & (0.018) \end{aligned}$ | $\begin{aligned} & 0.009 \\ & (0.006) \end{aligned}$ | $\begin{aligned} & 0.049 * * * \\ & (0.007) \end{aligned}$ | $\begin{aligned} & -0.049 * * * \\ & (0.006) \end{aligned}$ | $\begin{aligned} & -0.005 \\ & (0.004) \end{aligned}$ |
| SEAM SEAM X Female | $\begin{aligned} & \hline-0.026^{* *} \\ & (0.012) \\ & 0.030^{*} \\ & (0.017) \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline-0.003 \\ & (0.004) \\ & 0.010^{* *} \\ & (0.005) \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline-0.007 \\ & (0.005) \\ & 0.015^{* *} \\ & (0.007) \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline-0.005 \\ & (0.004) \\ & 0.012^{* *} \\ & (0.006) \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline-0.002 \\ & (0.003) \\ & 0.007^{*} \\ & (0.004) \\ & \hline \end{aligned}$ |
| $\begin{aligned} & \text { SEAM }+ \text { SEAM X } \\ & \quad \text { Female } \\ & \text { P-val } \end{aligned}$ | 0.004 0.768 | 0.006 0.092 | 0.008 0.120 | 0.007 0.049 | 0.005 0.040 |
| MDV Female | 8.593 | 0.906 | 0.842 | 0.089 | 0.040 |
| MDV Male | 8.432 | 0.905 | 0.800 | 0.165 | 0.057 |
| Observations | 48,165 | 48,165 | 48,165 | 48,165 | 48,165 |

ences
Source: Burgess et al. (2022), The importance of external assessments: High school math and gender gaps in STEM degrees. Economics of Education Review 88: 102267.

## Semi-external assessment in math (SEAM)

- If female students in programs with Math A are randomly drawn for SEAM, they are more likely to
- enroll in and graduate from college (borderline significant)
- chose programs requiring Math A (e.g. engineering, math, physics) or programs demanding Math A (programs where average written math exam grade $>90$ p)
- Mechanisms:
- Mechanical effect through GPA (no)
- Human capital effect through studying for the oral exam (maybe)
- Second opinion affects belief about own math ability (yes)
- Effects driven by girls with high SES or high math abilities (yes)


## Double-dose algebra



## Double-dose algebra

- RQ: Does additional algebra support improve education outcomes?
- From 2003, students in need in Chicago Public Schools received double-dose algebra: regular + support algebra
- Offered to students whose 8th grade math scores were below the national median



## A Degree Attainment: Any Degree ( $9^{\text {th }}$-grade cohort in 2003)



B Degree Attainment: Any Degree (9 ${ }^{\text {th }}$-grade cohort in 2004)


Table 1. The average impact of being assigned to doubledose algebra

| Outcomes | 2003 |  | 2004 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Estimate | SE | Estimate | SE |
| Total semesters |  |  |  |  |
| Control mean | 9.082*** | 0.220 | 9.496*** | 0.371 |
| Treatment effects: all students | 0.468*** | 0.138 | -0.055 | 0.147 |
| 20\% bandwidth | $0.421^{* *}$ | 0.201 | 0.043 | 0.224 |
| 10\% bandwidth | 0.540** | 0.258 | -0.156 | 0.261 |
| Any degree/certificate |  |  |  |  |
| Control mean | 0.146*** | 0.018 | 0.141*** | 0.028 |
| Treatment effects: all students | 0.034** | 0.014 | 0.017 | 0.013 |
| 20\% bandwidth | $0.031^{*}$ | 0.017 | 0.001 | 0.017 |
| 10\% bandwidth | 0.032 | 0.021 | -0.010 | 0.020 |
| $4-y$ degree |  |  |  |  |
| Control mean | 0.070*** | 0.013 | 0.084*** | 0.023 |
| Treatment effects: all students | 0.033*** | 0.012 | 0.007 | 0.009 |
| 20\% bandwidth | 0.025* | 0.013 | -0.021 | 0.012 |
| 10\% bandwidth | 0.026* | 0.015 | -0.023 | 0.015 |
| No. of students |  |  |  |  |
| All students 19,800 |  |  | 491 |  |
| 20\% bandwidth 10,2 | 86 |  | 418 |  |
| 10\% bandwidth 5,368 |  |  | 408 |  |
| No. of schools | 62 |  | 66 |  |

[^1]

Fig. 6. School-average impact of scoring below the cut point on taking double-dose (horizontal axis) classroom-peer skill (vertical axis). (A) 2003 cohort. (B) 2004 cohort.

Table 3. ITT impacts by peer skills: Schools with above-average course compliance in 2003

|  | ```Small declines (13 schools, 2,090 students)``` |  | Large declines (35 schools, 5,922 students) |  |
| :---: | :---: | :---: | :---: | :---: |
| Outcomes | Estimate | SE | Estimate | SE |
| 2003 |  |  |  |  |
| Total semesters | 0.877* | 0.489 | 0.190 | 0.247 |
| Any degree/certificate | 0.090** | 0.040 | 0.014 | 0.020 |
| $4-\mathrm{y}$ degree | 0.060** | 0.030 | 0.017 | 0.017 |
|  | (5 schools, 273 students) |  | (19 schools, 2,765 students) |  |
|  | Estimate | SE | Estimate | SE |
| 2004 |  |  |  |  |
| Total semesters | 2.456 | 1.531 | 0.255 | 0.419 |
| Any degree/certificate | 0.092 | 0.125 | 0.026 | 0.034 |
| 4-y degree | 0.160 | 0.100 | 0.008 | 0.026 |

** $P<0.05, * P<0.1$. Note: This analysis uses 20 th percentile bandwidth because the parametric model using all students is sensitive to outliners. The result using the 10th percentile is similar. Also, the analysis by pooling the two cohorts produced similar results.

## Double-dose algebra

- Positive effect on math scores and college attainment
- for median-skilled students assigned to regular classrooms


## - No effect

- for median-skilled students assigned to low-skilled peer group
- for low-skilled students (post-/pre double-dose policy comparison)


## Growth mindset



## Growth mindset

- RQ: Does instilling a growth mindset in student increase challenge-seeking and choice of advanced math?
- High school students
- Norway ( $\mathrm{N}=6451$ )
- U.S. $(\mathrm{N}=14,472)$
- Intervention content
- Sticky metaphor "the brain is like a muscle"
- Source credibility (e.g. scientific articles or quotes from prof of psych)
- Descriptive social norms (e.g. read a speech by Michele Obama on how hard work makes you smarter)
- Self-persuasion or "saying is believing" exercises (e.g. help a struggling $9^{\text {th }}$ grade student handle challenges)
< Tilbake
Hjernen er som en muskel. Nâr du bruker den, blir den sterkere og smartere.

Hvorfor sier forskere at jo hardere du jobber. desto smartere blir hjernen? Som du kanskje vet inneholder hjernen din milliarder av smá nerveceller.

En nervecelle har et cellelegeme, en lang gren som kalles akson og smá kvister som kalles dendritter. Det er disse som skaper forbindelser mellom de ulike nervecellene.

Nảr du beveger musepekeren over de blà punktene pà tegningen, ser du hvor de ulike
delene av nervecellen befinner seg


Laer mer

Strukturen i en nervecelle

Fig. 2. Screen Shot from Computer Program.

## Growth mindset

- Timeline, 1-4 weeks:
- $\mathrm{T}=1$ : baseline $+1^{\text {st }}$ section of treatment/control
- $\mathrm{T}=2: 2^{\text {nd }}$ section + outcome
- Measures:
- Mindset (scale 1 to 6):
- "You have a certain amount of intelligence, and you really can't do much to change it,"
- "Your intelligence is something about you that you can't change very much,"
- "Being a 'math person' or not is something that you really can't change. Some people are good at math and other people aren't."
- Challenge seeking
- Choose hypothetical hard ("possibly learn something new") vs. easy ("get most problems right") math homework
- Advanced math course choice
- Norway: advanced/theoretical vs. non-advanced/applied math course
- U.S.: Algebra II/Trigonometry vs. Algebra I/Geometry
- Results:
- reduced fixed mindset
- increased challenge seeking behavior (across sub-groups)
- increased advanced math course taking (motivation) and course passing (performance)

Source: Rege et al. (2021) How Can We Inspire Nations of Learners? An Investigation of Growth Mindset and Challenge-Seeking in Two Countries. American Psychologist.

# Wrap up 



## Wrap up

- New course package
- Think about gender and margin
- Semi-external assessment in math
- Think about gender
- Double-dose algebra
- Think about context and margin
- Growth mindset interventions
- Promising across context


[^0]:    Occupational Task Intensity based on 1998 O*NET

[^1]:    $* * * P<0.01, * * P<0.05, * P<0.1$.

